PHYS 1370 Introduction to Quantum Mechanics I Fall 2008

Ayres Freitas

http://www.pitt.edu/~afreitas/phy1370.html

Homework for week of 11/03/2008

Deadline 11/10/2008

Problem 1:

The Hamiltonian of some two-level system is

 $\hat{H} = h\left(|1\rangle\langle 1| - |2\rangle\langle 2| + i|1\rangle\langle 2| - i|2\rangle\langle 1|\right),$

where $|1\rangle, |2\rangle$ is an orthonormal basis and h is a number with dimension of energy. Find its eigenvalues and eigenvectors (as linear combinations of $|1\rangle$ and $|2\rangle$). Give the matrix H representing H in the basis of $|1\rangle, |2\rangle$; as well as in the basis of the eigenvectors.

Problem 2:

a) Calculate the following commutators:

 $[\hat{L}_z, \hat{x}]$ $[\hat{L}_z, \hat{y}]$ $[\hat{L}_z, \hat{z}]$ $[\hat{L}_z, \hat{p}_x]$ $[\hat{L}_z, \hat{p}_y]$ $[\hat{L}_z, \hat{p}_z]$

- b) Evaluate the commutators $[\hat{L}_z, r^2]$ and $[\hat{L}_z, \hat{p}^2]$, where $r^2 = x^2 + y^2 + z^2$ and $\hat{p}^2 =$ $\hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2.$
- c) Show that the Hamilton operator $\hat{H} = \hat{p}^2/(2m) + V(r)$ commutes with all three components of L.
- d) Show that $d\langle \hat{\mathbf{L}} \rangle/dt = 0$ for any spherically symmetric potential. Note: This is one form of the quantum statement of conservation of angular momentum.

Problem 3:

- a) What is $\hat{L}_+ Y_l^l$?
- b) Use the result of (a), together with

$$\hat{L}_{+} = \hbar e^{i\phi} \left(\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right)$$

and the fact that $\hat{L}_z Y_l^l = \hbar l Y_l^l$, to determine $Y_l^l(\theta, \phi)$ up to a normalization constant.

- c) Check explicitly that your solution for Y_l^l satisfies the angular equation ([4.18] in the book).
- d) Check explicitly that the Y_l^l are orthogonal for different values of l.

(3 points)

(5 points)

(5 points)

Problem 4:

Given the angular function

$$\Upsilon(\theta,\phi) = \frac{1}{2}Y_{1,-1}(\theta,\phi) + \frac{1}{\sqrt{2}}Y_{1,0}(\theta,\phi) + \frac{1}{2}Y_{1,1}(\theta,\phi).$$

Is $\Upsilon(\theta, \phi)$ an eigenfunction of \hat{L}^2 , \hat{L}_x , \hat{L}_y , \hat{L}_z ? Determine the expectation values of these operators. (4 points)