Homework for week of $11 / 03 / 2008$

Deadline 11/10/2008

Problem 1:

The Hamiltonian of some two-level system is

$$
\hat{H}=h(|1\rangle\langle 1|-|2\rangle\langle 2|+i|1\rangle\langle 2|-i|2\rangle\langle 1|),
$$

where $|1\rangle,|2\rangle$ is an orthonormal basis and h is a number with dimension of energy. Find its eigenvalues and eigenvectors (as linear combinations of $|1\rangle$ and $|2\rangle$). Give the matrix H representing \hat{H} in the basis of $|1\rangle,|2\rangle$; as well as in the basis of the eigenvectors.

Problem 2:

a) Calculate the following commutators:

$$
\left[\hat{L}_{z}, \hat{x}\right] \quad\left[\hat{L}_{z}, \hat{y}\right] \quad\left[\hat{L}_{z}, \hat{z}\right] \quad\left[\hat{L}_{z}, \hat{p}_{x}\right] \quad\left[\hat{L}_{z}, \hat{p}_{y}\right] \quad\left[\hat{L}_{z}, \hat{p}_{z}\right]
$$

b) Evaluate the commutators $\left[\hat{L}_{z}, r^{2}\right]$ and $\left[\hat{L}_{z}, \hat{p}^{2}\right]$, where $r^{2}=x^{2}+y^{2}+z^{2}$ and $\hat{p}^{2}=$ $\hat{p}_{x}^{2}+\hat{p}_{y}^{2}+\hat{p}_{z}^{2}$.
c) Show that the Hamilton operator $\hat{H}=\hat{p}^{2} /(2 m)+V(r)$ commutes with all three components of $\hat{\mathbf{L}}$.
d) Show that $d\langle\hat{\mathbf{L}}\rangle / d t=0$ for any spherically symmetric potential.

Note: This is one form of the quantum statement of conservation of angular momentum.

Problem 3:

a) What is $\hat{L}_{+} Y_{l}^{l}$?
b) Use the result of (a), together with

$$
\hat{L}_{+}=\hbar e^{i \phi}\left(\frac{\partial}{\partial \theta}+i \cot \theta \frac{\partial}{\partial \phi}\right)
$$

and the fact that $\hat{L}_{z} Y_{l}^{l}=\hbar l Y_{l}^{l}$, to determine $Y_{l}^{l}(\theta, \phi)$ up to a normalization constant.
c) Check explicitly that your solution for Y_{l}^{l} satisfies the angular equation ([4.18] in the book).
d) Check explicitly that the Y_{l}^{l} are orthogonal for different values of l.

Problem 4:

Given the angular function

$$
\Upsilon(\theta, \phi)=\frac{1}{2} Y_{1,-1}(\theta, \phi)+\frac{1}{\sqrt{2}} Y_{1,0}(\theta, \phi)+\frac{1}{2} Y_{1,1}(\theta, \phi) .
$$

Is $\Upsilon(\theta, \phi)$ an eigenfunction of $\hat{L}^{2}, \hat{L}_{x}, \hat{L}_{y}, \hat{L}_{z}$?
Determine the expectation values of these operators.

