PHYS 1370 Introduction to Quantum Mechanics I Fall 2008

Ayres Freitas

http://www.pitt.edu/~afreitas/phy1370.html

Homework for week of 08/25/2008

Deadline 09/03/2008

Problem 1:

Show that the Euler-Lagrange equations in the Lagrange formalism

$$\frac{\partial \mathcal{L}}{\partial x_i} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{x}_i},\tag{1}$$

(1 point)

(3 points)

and the canonical equations in the Hamilton formalism

$$\frac{\partial \mathcal{H}}{\partial p_i} = \dot{x}_i, \qquad \frac{\partial \mathcal{H}}{\partial x_i} = -\dot{p}_i, \qquad \qquad \mathcal{H} = \sum_i \dot{x}_i p_i - \mathcal{L}$$
(2)

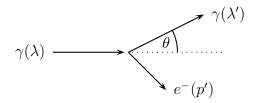
are equivalent.

Note: $\mathcal{H} = \mathcal{H}(x_1, x_2, \dots, p_1, p_2, \dots)$ and $\mathcal{L} = \mathcal{L}(x_1, x_2, \dots, \dot{x}_1, \dot{x}_2, \dots)$ are functions of different variables, so be careful with partial derivatives and use the chain rule where necessary.

Problem 2: Review of basic vector algebra

Consider an esalistic collision between billard ball A with momentum p_A and billard ball B with momentum p_B . After the collision the momenta are p'_A and p'_B , respectively. The x-, y-, and z-components of the momenta are given by

$$p_A = \begin{pmatrix} -1 - \sqrt{2} \\ -1 + \sqrt{2} \\ 2 \end{pmatrix}, \qquad p_B = \begin{pmatrix} \sqrt{2} \\ -\sqrt{2} \\ 0 \end{pmatrix}, \qquad p'_A = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}, \qquad (3)$$


- a) Calculate the angle between the incoming and outgoing direction of B.
- b) Compute $M \cdot p_B$ where

$$M = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 1 & 0 \\ 3 & 3 & 1 \end{pmatrix}.$$
 (4)

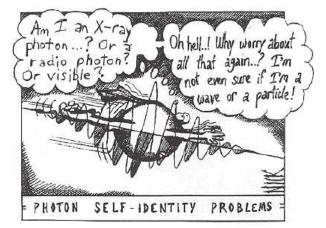
What special property does p_B have for M?

c) Determine all eigenvalues of M.

Problem 3: Compton scattering

An incident X-ray photon with wavelength λ hits an electron at rest. The two particles scatter elastically, with the outgoing photon having wavelength λ' and the outgoing electron having momentum p'.

Show that


$$\lambda' - \lambda = \frac{h}{mc} (1 - \cos \theta), \tag{5}$$

where θ is the angle between incoming and outgoing photon.

Hint: use energy-momentum conservation and the energy-momenum relation from special relativity:

	photon energy	photon momentum	electron energy	electron momentum
before scattering	$\frac{hc}{\lambda}$	$\frac{h}{\lambda}$	mc^2	0
after scattering	$\frac{hc}{\lambda'}$	$\frac{h}{\lambda'}$	$\sqrt{m^2c^4 + p'^2c^2}$	p'

Note that momentum is a vector with more than one component!

(2 points)